10 research outputs found

    Removal of nucleus pulposus from the intervertebral disc – the use of chymopapain enhances mechanical removal with rongeurs: a laboratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A laboratory study was conducted, on cadaveric sheep spines to develop an effective procedure for removing as much nucleus as possible from an intervertebral disc with minimal disruption to the annulus. The results of many studies involving removal of nucleus, including chemonucleolysis, using chymopapain, have been published but we are not aware of any previous quantitative studies on procedures for removing as much nucleus as possible from the disc.</p> <p>Methods</p> <p>All procedures were performed via a 3 mm trocar. Four procedures were compared: (I) unilateral approach using rongeurs alone, (II) bilateral approach using rongeurs alone, (III) unilateral approach using rongeurs followed by chymopapain and (IV) bilateral approach using rongeurs followed by chymopapain.</p> <p>Results</p> <p>The percentages of nucleus removed were: (I) 34%, (II) 41%, (III) 52% and (IV) 75%; there were significant differences between the four sets of results according to ANOVA.</p> <p>Conclusion</p> <p>Significantly more nucleus is removed using a bilateral than a unilateral approach; significantly more nucleus is removed if chymopapain is used in addition to rongeurs. A brush is useful in removing strands of nucleus loosened by chymopapain.</p

    Viscoelastic properties of bovine knee joint articular cartilage : dependency on thickness and loading frequency

    Get PDF
    BackgroundThe knee is an incongruent joint predisposed to developing osteoarthritis, with certain regions being more at risk of cartilage degeneration even in non-osteoarthrosed joints.At present it is unknown if knee regions prone to cartilage degeneration have similar storage and/or loss stiffness, and frequency-dependent trends, to other knee joint cartilage. The aim of this study was to determine the range of frequency-dependent, viscoelastic stiffness of articular cartilage across the bovine knee joint. Such changes were determined at frequencies associated with normal and rapid heel-strike rise times.MethodsCartilage on bone, obtained from bovine knee joints, was tested using dynamic mechanical analysis (DMA). DMA was performed at a range of frequencies between 1 and 88 Hz (i.e. relevant to normal and rapid heel-strike rise times). Viscoelastic stiffness of cartilage from the tibial plateau, femoral condyles and patellar groove were compared.ResultsFor all samples the storage stiffness increased, but the loss stiffness remained constant, with frequency. They were also dependent on cartilage thickness. Both the loss stiffness and the storage stiffness decreased with cartilage thickness. Femoral condyles had the thinnest cartilage but had the highest storage and loss stiffness. Tibial plateau cartilage not covered by the meniscus had the thickest cartilage and lowest storage and loss stiffness.ConclusionDifferences in regional thickness of knee joint cartilage correspond to altered frequency-dependent, viscoelastic stiffness

    Pulsed low-intensity ultrasound increases proliferation and extracelluar matrix production by human dermal fibroblasts in three-dimensional culture

    Get PDF
    This study evaluated the effect of pulsed low-intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by human dermal fibroblasts encapsulated in alginate. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content, dimethylmethylene blue assay for glycosaminoglycan content and scanning electron microscopy were performed on the encapsulated cells treated with pulsed low-intensity ultrasound and a control group that remained untreated. Pulsed low-intensity ultrasound showed a significant effect on cell proliferation and collagen deposition but no consistent pattern for glycosaminoglycan content. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both treated and control groups. These results suggest that pulsed low-intensity ultrasound alone shows a positive effect on cell proliferation and collagen deposition even without growth factor supplements

    Wear of the Charité® lumbar intervertebral disc replacement investigated using an electro-mechanical spine simulator

    Get PDF
    The Charité(®) lumbar intervertebral disc replacement was subjected to wear testing in an electro-mechanical spine simulator. Sinusoidally varying compression (0.6–2 kN, frequency 2 Hz), rotation (±2°, frequency 1 Hz), flexion–extension (6° to −3°, frequency 1 Hz) and lateral bending (±2°, frequency 1 Hz) were applied out of phase to specimens immersed in diluted calf serum at 37 °C. The mass of the ultra-high-molecular weight polyethylene component of the device was measured at intervals of 0.5, 1, 2, 3, 4 and 5 million cycles; its volume was also measured by micro-computed tomography. Total mass and volume losses were 60.3 ± 4.6 mg (mean ± standard deviation) and 64.6 ± 6.0 mm(3). Corresponding wear rates were 12.0 ± 1.4 mg per million cycles and 12.8 ± 1.2 mm(3) per million cycles; the rate of loss of volume corresponds to a mass loss of 11.9 ± 1.1 mg per million cycles, that is, the two sets of measurements of wear agree closely. Wear rates also agree closely with measurements made in another laboratory using the same protocol but using a conventional mechanical spine simulator

    Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Articular cartilage is a viscoelastic material, but its exact behaviour under the full range of physiological loading frequencies is unknown. The objective of this study was to measure the viscoelastic properties of bovine articular cartilage at loading frequencies of up to 92 Hz.</p> <p>Methods</p> <p>Intact tibial plateau cartilage, attached to subchondral bone, was investigated by dynamic mechanical analysis (DMA). A sinusoidally varying compressive force of between 16 N and 36 N, at frequencies from 1 Hz to 92 Hz, was applied to the cartilage surface by a flat indenter. The storage modulus, loss modulus and phase angle (between the applied force and the deformation induced) were determined.</p> <p>Results</p> <p>The storage modulus, <it>E'</it>, increased with increasing frequency, but at higher frequencies it tended towards a constant value. Its dependence on frequency, <it>f</it>, could be represented by, <it>E' </it>= <it>Alog</it><sub><it>e </it></sub>(<it>f</it>) + <it>B </it>where <it>A </it>= 2.5 ± 0.6 MPa and <it>B </it>= 50.1 ± 12.5 MPa (mean ± standard error). The values of the loss modulus (4.8 ± 1.0 MPa mean ± standard deviation) were much less than the values of storage modulus and showed no dependence on frequency. The phase angle was found to be non-zero for all frequencies tested (4.9 ± 0.6°).</p> <p>Conclusion</p> <p>Articular cartilage is viscoelastic throughout the full range of frequencies investigated. The behaviour has implications for mechanical damage to articular cartilage and the onset of osteoarthritis. Storage modulus increases with frequency, until the plateau region is reached, and has a higher value than loss modulus. Furthermore, loss modulus does not increase with loading frequency. This means that more energy is stored by the tissue than is dissipated and that this effect is greater at higher frequencies. The main mechanism for this excess energy to be dissipated is by the formation of cracks.</p

    Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyurethane (PU) foam is widely used as a model for cancellous bone. The higher density foams are used as standard biomechanical test materials, but none of the low density PU foams are universally accepted as models for osteoporotic (OP) bone. The aim of this study was to determine whether low density PU foam might be suitable for mimicking human OP cancellous bone.</p> <p>Methods</p> <p>Quasi-static compression tests were performed on PU foam cylinders of different lengths (3.9 and 7.7 mm) and of different densities (0.09, 0.16 and 0.32 g.cm<sup>-3</sup>), to determine the Young's modulus, yield strength and energy absorbed to yield.</p> <p>Results</p> <p>Young's modulus values were 0.08–0.93 MPa for the 0.09 g.cm<sup>-3 </sup>foam and from 15.1–151.4 MPa for the 0.16 and 0.32 g.cm<sup>-3 </sup>foam. Yield strength values were 0.01–0.07 MPa for the 0.09 g.cm<sup>-3 </sup>foam and from 0.9–4.5 MPa for the 0.16 and 0.32 g.cm<sup>-3 </sup>foam. The energy absorbed to yield was found to be negligible for all foam cylinders.</p> <p>Conclusion</p> <p>Based on these results, it is concluded that 0.16 g.cm<sup>-3 </sup>PU foam may prove to be suitable as an OP cancellous bone model when fracture stress, but not energy dissipation, is of concern.</p

    Measurement of lumbar spine intervertebral motion in the sagittal plane using videofluoroscopy

    No full text
    BACKGROUND: Static radiographic techniques are unable to capture the wealth of kinematic information available from lumbar spine sagittal plane motion. OBJECTIVE: Demonstration of a viable non-invasive technique for acquiring and quantifying intervertebral motion of the lumbar spine in the sagittal plane. METHODS: Videofluoroscopic footage of sagittal plane lumbar spine flexion-extension in seven symptomatic volunteers (mean age = 48 yrs) and one asymptomatic volunteer (age = 54 yrs) was recorded. Vertebral bodies were digitised using customised software employing a novel vertebral digitisation scheme that was minimally affected by out-of-plane motion. RESULTS: Measurement errors in intervertebral rotation (± 1°) and intervertebral displacement (± 0.5 mm) compare favourably with the work of others. Some subjects presenting with an identical condition (disc prolapse) exhibited a similar column vertebral flexion-extension relative to S1 (L3: max. 5.9°, min. 5.6°), while in others (degenerative disc disease) there was paradoxically a significant variation in this measurement (L3: max. 28.1°, min. 0.7°). CONCLUSIONS: By means of a novel vertebral digitisation scheme and customised digitisation/analysis software, sagittal plane intervertebral motion data of the lumbar spine data has been successfully extracted from videofluoroscopic image sequences. Whilst the intervertebral motion signatures of subjects in this study differed significantly, the available sample size precluded the inference of any clinical trends

    A review of system dynamics models applied in social and humanitarian researches

    No full text
    Over the past decades, the number of disasters has been on the rise, including earthquakes, war, flood and other incidents that cause destruction of society, such as education and health services. Forecasts show that over the next 50 years, natural and manmade disasters are expected to increase five-folds both in the number and impact. Therefore, there is a need for effective and efficient disaster support actions during emergencies. This compels humanitarian organizations to improve the effectiveness and efficiency of their approaches and facilitate decision making in resolving such complicated problems characterized by numerous parameters. Besides, humanitarian organizations face situations with multiple critical events, inadequate funding, limited time to plan and react, and operating in increasingly challenging circumstances. Useful approaches for tackling problems in such dynamic conditions require methods and tools that take into account uncertainty and enable managers to evaluate the dynamic complexity of such systems, to facilitate decision making. Among the large amount of decision-aid tools for humanitarian organizations, System Dynamic (SD) is a method used for the evaluation of complex system behavior and for presenting the effect of decisions over time in an easy-to-use model. This method has been applied in humanitarian problems, and this paper aims to present a review of the most relevant humanitarian publications associated with system dynamics. This literature review is a structured review of the papers published since 2003 onwards. The finding of this research can be used to facilitate further research in developing the system dynamic methodology for humanitarian organizations and to present the essential requirement of SD tools for modeling complex environments
    corecore